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Abstract
Purpose—To assess relationships between biomarkers for Alzheimer’s Disease (AD) and their
potential contributions to AD.

Methods—Biomarkers and cognitive evaluations were assessed longitudinally for 179 patients
with mild cognitive impairment (MCI), from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) from 2003–2006, and were used to examine, at any given time, the joint contributions of
hippocampal volume, whole brain volume, and brain glucose metabolism on clinical AD
progression, using the Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-Cog).
Marginal structural models (MSMs) were applied, and inverse-probability of treatment weight
(IPTW) estimation was utilized to account for time-dependent confounding between study
variables.

Results—At any given time, population-level differences (e.g. 1-standard deviation (SD)
increase) in brain glucose metabolism (−1.036 95% CI: −1.608, −0.464) and hippocampal volume
(−1.537 95% CI: −2.399, −0.674) independently reduced mean ADAS-Cog, whereas a 1-SD
increase in whole brain volume did not (0.372 95% CI: −0.283, 1.027). Effects of brain glucose
metabolism differed in subgroups defined by baseline covariates (e.g., age), but no subgroup
effects were observed for hippocampal volume and brain volume.

Conclusions—Brain glucose metabolism and hippocampal volume represent relevant biological
markers in subjects at risk for AD.

Medical Subject Headings (MeSH)
biological markers; causality; dementia; longitudinal studies

© 2012 Elsevier Inc. All rights reserved.

Address correspondence and reprint requests to: Thaddeus J. Haight, PhD, Helen Wills Neuroscience Institute, University of
California, Berkeley 118 Barker Hall, MC 3190 Berkeley, CA 94720-3190, Phone: 510-643-6616, tad@berkeley.edu.
aData used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(www.loni.ucla.edu\ADNI). As such, the investigators within ADNI contributed to the design and implementation of ADNI or
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at:
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Ann Epidemiol. Author manuscript; available in PMC 2013 December 01.

Published in final edited form as:
Ann Epidemiol. 2012 December ; 22(12): 868–875. doi:10.1016/j.annepidem.2012.09.004.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


INTRODUCTION
Alzheimer’s Disease (AD) represents a major public health concern given aging populations
in the U.S. and worldwide (1, 2). Efforts to better understand the disease have included
epidemiologic studies, some of which have utilized different biomarkers for AD (3–7).
Developments in neuroimaging have led to the availability of additional markers,
representative of anatomical, metabolic, and biochemical aspects of the disease (8–10).
These different biomarkers could be used to clarify further the causal pathways that
contribute to AD.

Relationships between various biomarkers, which measure structural and functional brain
changes, and their relationship to AD are not well understood. Individual biomarkers have
been studied extensively with respect to the disease (e.g., brain atrophy). Other studies have
investigated multiple biomarkers and their interrelationships with regard to AD (11–14).
However, few studies, if any, have examined the joint relationships of multiple biomarkers
and their respective contributions to AD over time.

Assessment of the individual effects of biomarkers that account for other biomarkers (e.g.,
contribution of whole brain volume independent of hippocampal volume) and other factors
would improve understanding of the disease process. However, standard statistical methods
may result in biased estimates of such effects given time-dependent confounders—i.e.,
variables that need to be adjusted but which occur on the causal pathway for the effect of
interest (Figure 1). Causal inference methods have been developed and applied previously to
evaluate effects given time-dependent confounders (15–17).

Amnestic mild cognitive impairment (MCI) represents an intermediate clinical stage in AD
(18). Subjects with MCI are classified as having memory impairment without additional
cognitive and functional impairments that characterize individuals with AD (18). While
MCI subjects are at increased risk of AD (i.e., 12% annual rate vs. 1–2% in non-MCI
subjects), not all transition to AD (9). Levels of different biomarkers in MCI vary
considerably, and a joint examination of these biomarkers would allow for investigation of
their relative effects on changes in disease status in MCI.

We applied causal methods to examine the relative contributions of different biomarkers on
AD progression in subjects with MCI. Moreover, we examined the contributions of these
biomarkers in different subpopulations at variable risk for AD (e.g., age groups). A broader
understanding of the relationships between individual biomarkers and AD could be
informative with regard to AD progression and potential interventions to the disease.

METHODS
Subjects

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a longitudinal study to develop
and examine biomarkers of AD progression (9). Subjects were recruited from multiple
clinical sites in the U.S. and Canada. Subjects were between ages 55 and 90, and were free
of other significant neurologic diseases. Further details about inclusion criteria and other
information are available (19, 20).

At baseline, all subjects received a clinical evaluation and a brain MRI scan. Subjects
diagnosed with MCI (n=398) had evaluations repeated over follow-up at 6, 12, 18, 24, and
36 month intervals. In addition to clinical and MRI evaluations, half of the subjects received
[18F]fluro-deoxyglucose position emission tomography (FDG-PET) scans, to assess brain
glucose metabolism, at baseline and follow-up. Cerebrospinal fluid (CSF) samples were
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obtained for half of the subjects at baseline. Therefore, the number of subjects available for
analysis differed depending on the set of biomarkers examined.

MCI subjects with baseline MRI and FDG-PET data (n=179) were selected for the study.
Available follow-up data varied across subjects. In the 179 subjects, 739 observations from
different subject-visit times were available for analysis (i.e., complete FDG-PET and MRI
data). For 30 subjects with missing data at one of the time points, FDG-PET and MRI
measures were imputed by taking the average of the extant values of these measures at the
adjoining time points to the records with missing data. Similarly, values were imputed for
one subject with missing values at two consecutive time points. Records where FDG-PET
and MRI data were missing at a patient’s final follow-up visit were excluded. A subset of
subjects with CSF samples (89 subjects, 389 total observations) were available for a separate
analysis, which examined CSF beta-amyloid (CSF-Aβ) as an additional biomarker of AD.

Study Measures
Study outcome—The Alzheimer’s Disease Assessment Scale-Cognitive Subscale
(ADAS-Cog) is a measure of cognitive dysfunction in AD. It has primary functions similar
to the Mini-Mental State Examination (MMSE) for evaluation of language, memory, and a
variety of other cognitive functions (21). A 70-point version of the test was used—i.e., 11
item test that excluded number cancellation and delayed word recall(21). Total score ranges
are 0 to 70, with a higher score indicative of poorer cognitive function.

Magnetic resonance imaging (MRI)—Structural magnetic resonance scans (1.5-T)
were acquired at multiple ADNI sites based on a standardized protocol(22). Bilateral
hippocampal volume and whole brain volume measures were obtained by scan processing
using FreeSurfer software(23). Left and right hippocampal volume were averaged to create a
summary measure for the analysis. Brain volume encompasses gray and white matter
volume.

Brain glucose metabolism—[18F]Fluro-deoxyglucose positron emission tomography
(FDG-PET) represents a quantitative in-vivo measure of brain glucose metabolism. Data
were acquired at sites nationwide using a standardized protocol (24). Details of image
processing of the PET scans are provided elsewhere (25, 26).

A composite measure of FDG-PET was used, based on an average of five brain regions that
were found to differentiate AD patients and healthy controls in a meta-analysis (25).

Cerebrospinal fluid beta-amyloid(1-42) (CSF-Aβ)—Details of CSF collection and
processing are given elsewhere (27). CSF-Aβ was used as a surrogate measure of brain
amyloid pathology. Studies comparing CSF-Aβ with autopsy-based as well in-vivo based
assessments of brain amyloid pathology, based on brain imaging, are available elsewhere
(12, 28).

Other covariates—Different variables independently associated with ADAS-Cog were
considered in the analysis as potential confounders and/or effect modifiers. Baseline
variables(units) included: age (years); sex; height (cm); education (years); apolipoprotein e4
allele (ApoE4) status (categorized as 0,1, 2 alleles); modified Hachinski score;
cardiovascular disease (yes/no (y/n)); diabetes (y/n); smoking (y/n); and hypertension (y/n).
Time-dependent variables included: white matter hyperintensities (% total brain volume);
systolic and diastolic blood pressure (mmHg); blood glucose (mg/dL); plasma homocysteine
(μmol/L); geriatric depression score (range: 0–15); and neuropsychiatric inventory
questionaire score (range: 0–5). In addition, FDG-PET, based on frontal-lateral brain
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regions, not included in the composite measure above, and previous ADAS-Cog, from t-1,
were included as potential confounders.

Statistical Analysis
Descriptive analysis—Variables were plotted to evaluate their change over time. The
relationship of brain volume and hippocampal volume was examined in plots, and Spearman
correlations were generated to assess the respective variability of each variable and its
potential contribution to the analysis. Associations of the different covariates described
above (“Other covariates”) and ADAS-Cog were examined to assess these covariates as
potential confounders.

Causal inference analysis—The analysis sought to examine the relative short-term
effects of FDG-PET, hippocampal volume, and brain volume on expected ADAS-Cog, at
given time t, as represented in Figure 1.

Based on Figure 1, changes in hippocampal volume and brain volume are assumed to
produce immediate short-term effects on ADAS-Cog, both directly and indirectly (through
FDG-PET) at any given time. Prior glucose metabolism (i.e., neuronal dysfunction and
synaptic dysfunction reflected in reduced glucose utilization, measured by FDG-PET at t-1)
is assumed to affect brain and hippocampal volume, which in turn are assumed to affect
subsequent FDG-PET at t (e.g., brain atrophy), based on previous biological data and the
most current model of AD biomarker change (10). The effect of FDG-PET on ADAS-Cog is
assumed to be an average of FDG-PET effects at t and t-1 representative of short and longer-
tem metabolic patterns on changes in ADAS-Cog. Other covariates described above and
measured at t (not included in graph) are assumed to affect volumetric and FDG-PET
variables at t, and could be affected potentially by prior levels of FDG-PET and volumetric
measures at t-1 (e.g., depression score and various metabolic changes (e.g., blood glucose)
that could occur indirectly from reduced function).

Marginal structural models (MSMs) were used to evaluate: 1) overall marginal effects of
FDG-PET, hippocampal volume and brain volume on ADAS-Cog; and 2) independent (i.e.,
direct) effects of these biomarkers not mediated by other biomarkers in the causal pathway
(e.g., effect of FDG-PET independent of volumetric effects). Additionally, MSMs were used
to examine modification of these effects by baseline age, ApoE4 status, and CSF-Aβ.

Briefly, causal inference methodology can provide unbiased estimates of MSMs in the
presence of time-dependent confounders as depicted in Figure 1—i.e., confounders of an
exposure of interest that are affected by previous levels of that exposure. By comparison,
standard analytical methods are likely to produce biased estimates of effects under these
conditions(29). To identify and estimate effects from MSMs requires a set of assumptions
and estimation procedures. Details are provided in the Appendix. Models were fit with linear
regression using generalized estimating equations (GEE) that included weights that were
derived for each subject (15). Given that short-term effects of different biomarkers were of
interest, the available data for given subjects were pooled (e.g., up to 6 time points per
subject) to improve precision. Analyses were implemented with standard software (SAS
version 9.1.3 and R version 2.4.1).

RESULTS
Characteristics of the study group are presented in Table 1. Of the group, 65.9% were men.
Subjects’ mean baseline age was 75, and ages ranged from 56 to 90 years. Subjects were
well-educated: 95.0% and 65.4% reported completion of high school and college,
respectively. Of the 179 subjects, 66 (36.9%) were diagnosed with AD within 3 years. Mean
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follow-up was 1.6 years, and 50% of the group completed at least 2 years of the study. Over
half of the subjects were ApoE4 carriers. Mean ADAS-Cog at any given time was 11.7, and
was greater (i.e., worse) in subjects who converted to AD. 89 of the 179 subjects had
recorded baseline CSF-Aβ measures (mean (range)): 159.8 (48.3–281.8)), which differed
significantly between subjects who did and did not convert to AD.

Individual and joint marginal effects of each of the biomarkers assessed in the study on
ADAS-Cog are presented in Table 2. The individual effect of each biomarker (Table 2, left)
represents the change in mean ADAS-Cog at any time t if everyone in the study population
experienced an increase in one of the respective biomarkers (e.g., 1 standard deviation (SD)
increase based on distribution of a particular biomarker in the study population). These
effects indicate that a short-term increase in any one of the three biomarkers individually
(FDG-PET, hippocampal volume, brain volume) would contribute to a significant reduction
(i.e., improvement) in mean ADAS-cog. For example, an increase the equivalent of 1 SD
(~520 mm3) in hippocampal volume in all subjects would result in a 15% reduction in mean
ADAS-Cog from 11.8 to 10.0.

Joint models examined the relative, independent effects of the different biomarkers –i.e.,
relative to one another---on ADAS-Cog (Table 2, right). For any particular model, the
effects represent the independent contributions of the correspondent biomarkers with respect
to change in mean ADAS-Cog at any time t, if, contrary to fact, the levels of the other
biomarkers in the model were fixed for everyone in the population. For example, based on
the model of FDG-PET and hippocampal volume, the effect of FDG-PET (-1.193 95% CI:
−1.795, −0.591) represents the reduction in mean ADAS-Cog for a 1 SD population-level
increase in FDG-PET if, contrary to fact, everyone had the same hippocampal volume. An
independent effect of hippocampal volume (−1.375 95% CI: −2.206, −0.544) was observed
in the same model. In a separate model that examined all three biomarkers simultaneously
(including brain volume), increases in FDG-PET (−1.036 95% CI: −1.608, −0.464) and
hippocampal volume (−1.537 95% CI: −2.399, −0.674) reduced ADAS-Cog, but the same
relative increase (i.e., 1 SD) in brain volume did not (0.372, 95% CI: −0.283, 1.027). These
results indicate that higher FDG-PET and hippocampal volume confer benefits
independently with respect to lower ADAS-Cog, at a population-level, whereas greater brain
volume, separately from FDG-PET and/or hippocampal volume, does not.

Other models evaluated effects of the various biomarkers for subpopulations defined by
differences in baseline age, Apoe4 status, and CSF-Aβ levels (Tables 3–5). Mean ADAS-
Cog did not differ by these groups (Tables 3–5, left column). By contrast, the effects of
FDG-PET on ADAS-Cog differed significantly for the different subpopulations based on the
covariates considered (Tables 3–5, middle column, top). For example, if everyone in the
population experienced higher FDG-PET (i.e. 1 SD), the effect was lower mean ADAS-Cog
in older vs. younger subjects (for each year: −0.076 95% CI −0.152, 0.000); in subjects with
one additional ApoE4 allele vs. subjects with one less E4 allele (−1.159 95% CI: −2.163,
−0.156); and subjects with higher CSF-Aβ vs. subjects with lower CSF-Aβ (per 1 pg/mL:
−0.014 95% CI: −0.026, −0.002).

Of the three biomarkers, only subgroup effects of FDG-PET were observed; there were no
observed significant differences in effects of hippocampal volume or brain volume (Tables
3–5, middle column) in the same subpopulations examined with FDG-PET.

Estimates from joint models that included interactions of FDG-PET and the baseline
covariates (Tables 3–5, right column) were attenuated slightly compared to the estimates in
the univariable models with FDG-PET alone (Tables 3–5, middle column, top). Interactions
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between the volumetric biomarkers and the baseline covariates were not significant and are
not presented.

DISCUSSION
We examined the causal relations of three biomarkers, representative of different pathways
that could contribute to AD progression in subjects with MCI. FDG-PET, a marker of brain
glucose utilization, and hippocampal volume were independently related to ADAS-Cog,
which was used as a marker of AD progression. Brain volume was not independently related
to ADAS-Cog after accounting for the other two markers. Moreover, FDG-PET was the
only biomarker for which subgroup effects, based on age, apoE4 status, and CSF-Aβ, were
observed.

Investigators have underscored the importance of examining multiple biomarkers for better
assessment of the relationships of these biomarkers with AD (12–14). The current study
builds on previous work by employing methods which allowed for modeling the joint
dependencies between different biomarkers over time and quantifying the marginal effects
of these biomarkers to better clarify their individual relationships to disease progression.

The study is compelling for a number of reasons. First, FDG-PET appears to represent a
pathway exclusive of hippocampal atrophy, which is strongly associated with cognitive
decline in AD (30–32). This result suggests that MCI subjects with reduced hippocampal
volume, but with greater glucose metabolism, may experience less (or delayed) cognitive
decline compared to if the same subjects experienced less glucose metabolism. An
independent effect of FDG-PET could have implications for AD progression at a
population-level given the wide variability of its distribution in MCI. Moreover, FDG-PET,
in addition to MRI, could be utilized in studies for investigation of the relationships between
these markers and other factors (e.g., diabetes, physical activity), for improved specification
of pathways to AD.

Subgroup effects for FDG-PET were observed in groups at risk for AD. These results
suggest that greater metabolic activity may be protective in such groups (i.e., older age,
presence of ApoE4 allele), though the effects were relatively small. Effects of FDG-PET
were observed in subjects with higher CSF-Aβ, who are at less risk of AD than those with
lower CSF-Aβ. It is possible that CSF-Aβ is a more specific marker of AD than age or
ApoE4, such that any protective effects of metabolic activity are outweighed by greater
brain beta-amyloid, which lower CSF-Aβ represents.

Greater brain volume did not improve ADAS-Cog independently of the other biomarkers
considered. Although brain volume represents a global measure of both disease progression
(i.e., atrophy) and reserve, it may not be as specific to AD as the other biomarkers. Others
have shown overall brain atrophy to be predictive of AD onset in MCI subjects after
accounting for hippocampal volume (33), however, this may be related this study’s outcome
measure (AD onset) compared to ADAS-Cog, which measures cognitive function. Also, it is
possible that our methodology, which accounted for dependence between study variables
over time, may explain in part the reduced effects of brain volume, as well the independent
effects observed for the other biomarkers.

One of the strengths of the study includes its use of causal inference methods to summarize
and relate effects of biomarkers assessed over time on ADAS-Cog. It is possible, however,
that the MSM models used to examine these effects were not entirely accurate nor that our
estimation of these MSMs effectively controlled for, or included, all potential confounders
of the effects examined (See Appendix). We applied model selection tools that have been
shown to provide improved model fits, over typical ad-hoc assumptions, to better specify
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models used in MSM estimation (34, 35). We assumed a temporal order between biomarkers
(See Figure 1), which may have not been fully realized in the actual data—i.e., volume
measures were obtained simultaneously, based on the same MRI scan, and in some instances
were measured subsequently to FDG-PET. However, the assumption should be satisfied
based on the biologic plausibility of the relationships between the variables (i.e., reduced
volume affects FDG-PET, brain volume encompasses hippocampal volume). Still, it is
possible that effect estimates may be biased due to violations of this assumption or others
related to model misspecification or unmeasured confounding.

MCI subjects represent an increasingly important population for study given their transitory
status with respect to further cognitive decline and AD, and their potential responsiveness to
intervention (9). It is unclear whether the findings of the study are applicable to a wider
population of MCI subjects at risk of AD. Subjects with stroke and other underlying
neurologic abnormalities were excluded from ADNI. The rate of AD conversion in this MCI
group (i.e., annual rate of 12%) is comparable to rates reported for different population
studies, although these rates varied considerably (36, 37).

In summary, this study found that population-level increases in markers of brain metabolism
and hippocampal volume, in subjects diagnosed with MCI, independently improved
cognitive function at any given time, and appeared to reduce risk of progressive AD. These
measures should be considered in future studies given their potential for specifying AD
pathways and informing therapeutic and public health strategies against the disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1.
Brain volume and hippocampal volume can directly affect ADAS-Cog as well as through
reduction in brain glucose metabolism, as measured by FDG-PET. These measures are
affected also by reduction in glucose metabolism which is the result of reduced neuronal/
synaptic activity. Marginal structural models were applied and estimated to assess the
independent effects of the different biomarkers with respect to ADAS-Cog.
Hypothetical pathways by which different biomarkers for Alzheimer’s Disease (AD) affect
cognitive function (ADAS-Cog), a marker of AD progression, at any given time t.
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